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Abstract

Fleming’s inequality is generalized to the decay function of mixed states. We
show that for any symmetric Hamiltonian h̄h and for any density operator ρ

on a finite-dimensional Hilbert space with the orthogonal projection � onto
the range of ρ the estimate Tr(� e−ihtρ eiht ) � cos2((�h)ρt) holds for all t
with (�h)ρ |t | � π/2. We show that equality either holds for all t ∈ R or
it does not hold for a single t with 0 < (�h)ρ |t | � π/2. All the density
operators saturating the bound for all t ∈ R, i.e. the mixed intelligent states,
are determined.

PACS number: 03.65.−w

1. Introduction

Two states ρ1 and ρ2 of a quantum system can be discriminated on the basis of a single
measurement outcome if there exists an observable A such that the probability measures
which are generated by ρ1 and ρ2 on the spectrum of A have disjoint supports. In particular
if a state ρ evolves under a Hamiltonian H into the state ρt it may be desirable to determine
and perhaps to minimize a time t > 0 when the evolved state ρt can be discriminated from
the initial state ρ by a single measurement. A more realistic goal is to distinguish ρt from ρ

by performing single measurements on a ‘few’ ensemble members only.
If one chooses as an observable A an orthogonal projection � with Tr(�ρ) = 1, then this

can be done if Tr(�ρt) is close to 0 since this means that it is very unlikely to find the property
� in the state ρt , while it is certain in the state ρ. This is because Tr(�ρt) gives the probability
of finding the property � on a system in the state ρt . The function Pρ : t �→ Tr(�ρt) thus
captures the intuitive picture of the survival or decay of the property � [1]. The standard
example is provided by the state ρt of an unstable atomic nucleus susceptible to α-decay. Here
� is identified with the projection onto the subspace of state vectors for which the α-particle
is localized within the nucleus.
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Since in many cases the so-called survival probability Pρ(t) of the property � cannot be
computed explicitly, there arises the quest for estimates of the decay function Pρ. One such
important estimate for Pρ in the case of a pure state ρ and in the case of the property � = ρ

is due to Mandelstam and Tamm [2]. This estimate was rediscovered by different reasoning1

almost 30 years later by Fleming [3]. Since then it has been called Fleming’s bound. It says
that for any pure state ρ with a finite energy uncertainty (�H)ρ one has

Pρ(t) � cos2 (�H)ρt

h̄
for all t with

(�H)ρ |t |
h̄

� π/2. (1)

From the estimate (1) a lower bound to any positive t such that Pρ(t) = ε is obvious2:
h̄

(�H)ρ
arccos

√
ε � t.

The special case ε = 0 leads to the inequality
πh̄

2(�H)ρ
� t (2)

for the smallest time t > 0 with Pρ(t) = 0. This time, if existent, is called the orthogonalization
[4] or passage time [5]. Clearly, it would also be useful to have an upper bound for Pρ, from
which the existence of an orthogonalization time could be inferred. Polynomial upper bounds
have been given by Andrews [6], which, however, are strictly positive. Therefore, they do not
yield an upper bound to an orthogonalization time.

A simple geometric meaning of Fleming’s bound became clear through a work on the
time–energy uncertainty relation by Aharonov and Anandan [7]: first, 2t (�H)ρ/h̄ equals
the arc length of the curve λ �→ ρλ with 0 � λ � t in the projective space P(H) of one-
dimensional subspaces of H. Second, 2 arccos

√
Pρ(t) equals the geodesic distance between

ρ and ρt in P(H). Here the Riemannian geometry is defined by the Fubini-Study metric of
P(H). Thus, as has been pointed out by Brody [5], Fleming’s bound (1) is equivalent to the
fact that the length of a curve in P(H) is not less than the geodesic distance between its initial
and end points.

In [8] for a given Hamiltonian H all pure states ρ with an orthogonalization time equal
to the lower bound πh̄/2(�H)ρ of equation (2) have been identified, i.e., for such states
(�H)ρt = h̄π/2 holds for the smallest t > 0 with Pρ(t) = 0. These states are called
‘intelligent states’ as they saturate the Aharonov–Anandan uncertainty relation. A pure state ρ

is found to be intelligent if and only if there exist two eigenvectors φ1, φ2 of H corresponding
to different eigenvalues and with ‖φ1‖ = ‖φ2‖ such that ρ equals the orthogonal projection
onto the one-dimensional subspace C · (φ1 + φ2) [8].

Can all this be generalized to the more realistic case of a mixed state? After all even an
unstable uranium nucleus formed by a supernova explosion will not be produced in a pure
state. Other examples are provided by partially magnetized spin systems after changing the
polarizing direction of the magnetic field.

In [5] an orthogonalization time for a special type of mixed state has been considered.
The density operator ρ was assumed to be a mixture of mutually orthogonal intelligent pure
states and the first time when each one of these pure intelligent states becomes orthogonal to
its initial state was determined. Since the decomposition of a mixed state into pure ones is not
unique the physical relevance of this consideration is unclear. In [4] another generalization
of the orthogonalization time to mixed states has been addressed. In this work the fidelity
(Tr

√√
ρρt

√
ρ)2 is used to define what is meant by the orthogonality of two mixed states. In a

1 While in [2] the authors derived a differential inequality for Pρ(t), Fleming [3] derived another one for the transition
amplitude 〈φ, exp(−iHt/h̄)φ〉 of a unit vector φ.
2 Clearly this does not imply that there exists any t such that Pρ(t) = ε holds.
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similar spirit Uhlmann [9] has given an inequality for the fidelity analogous to Fleming’s bound.
Clearly, for mixed states the fidelity does not constitute a directly observable quantity. It neither
coincides with a survival probability Pρ(t) nor can it be obtained from the expectation value
of any other single observable. Therefore none of the works [4, 5, 9] presents a generalization
of Fleming’s bound (1) to the case of the survival probability of a property directly observable
on an arbitrary mixed state.

In order to achieve this we consider the function t �→ Pρ(t) = Tr(�ρt). Here � is chosen
to be the orthogonal projection onto the range of ρ. Thus � corresponds to the most restricted
property which is certain in the state ρ and Pρ(t) describes the survival probability of that
property. We confine our study to finite-dimensional Hilbert spaces.

We first extend Fleming’s bound to Pρ , then sharpen the bound by proving that only one
of the two cases:

(i) Pρ(t) > cos2((�H)ρt/h̄) for all t with 0 < (�H)ρ |t |/h̄ � π/2,
(ii) Pρ(t) = cos2((�H)ρt/h̄) for all t ∈ R

is realized. Finally we identify the set of all density operators which saturate Fleming’s bound.
Among all states of a given energy uncertainty they are those which move from a state with
the property � to the one which does not have this property in the shortest possible time.
Thus mixed states exist which are, at least in this sense, equally fast as pure ones. In order
to have the paper reasonably self-contained we have included a treatment of some closely
related well-known results on pure state decay. In this way it also becomes more visible which
structures remain unchanged when going from pure states to mixed ones. The main analytical
tool we will rely on is a theorem on differential inequalities stated in appendix A. The decay
function Pρ is denoted as Pφ when ρ = φ〈φ, ·〉.

2. Pure state decay

Let H be a finite-dimensional Hilbert space. The scalar product of two vectors φ,ψ ∈ H
is denoted by 〈φ,ψ〉. Let the dynamics of H be given in terms of a symmetric Hamiltonian
H = h̄h by φt = exp(−iht)φ for t ∈ R and φ ∈ H. The survival amplitude Aφ : R → C

is defined for φ ∈ H with ‖φ‖ = 1 through Aφ(t) = 〈φ, φt 〉 and accordingly the survival
probability of φ as a function of t is given by Pφ = |Aφ|2 : R → R�0. From the Cauchy–
Schwarz inequality we have Pφ � 1. The nonnegative number Pφ(t) is the probability that the
pure state φt 〈φt , ·〉 passes a preparatory filter for the state φ〈φ, ·〉. Due to

Aφ(−t) = Aφ(t)

Pφ is an even function. Since φ0 = φ we have Aφ(0) = 1 = Pφ(0).

The expectation value of h in the state φ〈φ, ·〉 is denoted by 〈h〉φ = 〈φ, hφ〉 and its
variance reads

(�h)2
φ = 〈h2〉φ − 〈h〉2

φ.

φ is an eigenvector of h if and only if (�h)φ = 0. Thus for (�h)φ = 0 the function Pφ is
constant, i.e. Pφ(t) = 1 holds for all t. For (�h)φ > 0, however, Pφ is not constant since
for t → 0

Pφ(t) =
∣∣∣∣1 − it〈h〉φ − 1

2
t2〈h2〉φ + i

1

3!
t3〈h3〉φ + O(t4)

∣∣∣∣
2

=
(

1 − 1

2
t2〈h2〉φ

)2

+

(
t〈h〉φ − 1

3!
t3〈h3〉φ

)2

+ O(t4)

= 1 − (�h)2
φt2 + O(t4).

Thus Pφ has a strict local maximum at t = 0 if and only if (�h)φ > 0.

3
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Due to the spectral theorem there exist (unique) nonzero pairwise orthogonal vectors
φ1, . . . , φn with hφα = ωαφα and ω1 < · · · < ωn such that

φt = e−iω1tφ1 + · · · + e−iωntφn

for all t. Then Aφ(t) = ∑n
α=1 λα e−iωαt with λα = ‖φα‖2 > 0 follows. For Pφ(t) one obtains

Pφ(t) =
n∑

α,β=1

λαλβ e−i(ωα−ωβ)t =
n∑

α,β=1

λαλβ cos[(ωα − ωβ)t]. (3)

Thus both Aφ and Pφ are restrictions of entire functions to the real line. In particular Aφ and
Pφ are C∞ functions.

It has been shown by Mandelstam and Tamm [2] and with a different strategy by Fleming
in [3] that for all t with (�h)φ|t | � π/2

Pφ(t) � cos2((�h)φt).

The original proof of Mandelstam and Tamm [2] has been elaborated upon by Schulman in
[10]. A new proof has been given recently by Kosiński and Zych [11].

We shall now prove the following somewhat stronger result implicitly contained in [4, 5].

Proposition 1. Let φ ∈ H with ‖φ‖ = 1 and (�h)φ > 0. Then exactly one of the alternatives
(i) or (ii) holds.

(i) Pφ(t) > cos2((�h)φt) for all t ∈ R with 0 < (�h)φ|t | � π/2,
(ii) Pφ(t) = cos2((�h)φt) for all t ∈ R.

Alternative (ii) holds if and only if there exist two vectors φ1, φ2 ∈ H with hφi = ωiφi, ω1 <

ω2, ‖φi‖2 = 1/2 such that φ = φ1 + φ2.

Proof. Let � = φ〈φ, ·〉. Then Pφ(t) = 〈φ, eiht� e−ihtφ〉 = 〈�〉φt
. From this it follows that

d

dt
Pφ(t) = i〈φ, eiht [h,�] e−ihtφ〉 = i〈[h,�]〉φt

.

Using the uncertainty relation for the pair (h,�) we thus obtain for P ′
φ(t) = d

dt
Pφ(t) the

estimate

|P ′
φ(t)| = |〈[h,�]〉φt

| � 2(�h)φ(��)φt
.

From (��)2
φt

= 〈�2〉φt
− 〈�〉2

φt
= 〈�〉φt

− 〈�〉2
φt

= 〈�〉φt
(1 − 〈�〉φt

) it follows that for all
t ∈ R

|P ′
φ(t)| � 2(�h)φ

√
Pφ(t)(1 − Pφ(t)). (4)

We first simplify this inequality by introducing the dimensionless time variable x =
t (�h)φ and the function v : R → [0, 1] with v(x) = Pφ(t). Inequality (4) then becomes
equivalent to

−2
√

v(x)(1 − v(x)) � v′(x) � 2
√

v(x)(1 − v(x)) for all x ∈ R.

In order to make use of the differential inequality

−2
√

v(x)(1 − v(x)) � v′(x) (5)

we first discuss the differential equation

y ′ = f (x, y) with f : R × (0, 1) → R, f (x, y) = −2
√

y(1 − y). (6)

The function y0 : (0, π/2) → (0, 1) with y0(x) = cos2 x is a solution of this differential
equation since for all x ∈ (0, π/2)

y ′
0(x) = −2 cos(x) sin(x) = −2

√
y0(x)

√
1 − y0(x) = f (x, y0(x)).

4
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This solution of (6) is of a maximal domain since the limits

lim
x→0

y0(x) = 1 and lim
x→π/2

y0(x) = 0

do not belong to the admitted range 0 < y < 1 of solutions. Other solutions of the maximal
domain are obtained from y0 by translation: yc(x) = y0(x − c) for c < x < c + π/2. By a
suitable choice of c the initial value problem yc(ξ) = η for any (ξ, η) ∈ R × (0, 1) is solved.
Since f obeys the local Lipschitz condition of the uniqueness theorem for the solutions of
first-order differential equations, the set of all solutions to y ′ = f (x, y) with the maximal
domain is given by {yc|c ∈ R}.

The continuous extension g of f to the domain R× [0, 1] leads to the differential equation
z′ = g(x, z) = −2

√
z(1 − z) which violates the local Lipschitz condition on the boundary

points (x, z) with either z = 0 or z = 1. The set of solutions of the extended equation with
the maximal domain is given by {zc|c ∈ R} with

zc : R → R, zc(x) =
⎧⎨
⎩

1 for x < c

cos2(x − c) for c � x � c + π/2
0 for x > c + π/2.

Thus any function zc with c � 0 is a solution of the initial value problem z(0) = 1 with the
maximal domain. For any such solution zc with c � 0 one has

z0(x) � zc(x) � 1

for all x � 0.

According to a theorem of differential inequalities, quoted in appendix A, we conclude
from (5) and from v(0) = 1 that for all x � 0

v(x) � z0(x). (7)

Thus v(x) � cos2 x for all x ∈ [0, π/2]. This is Fleming’s inequality.
Suppose now that η = v(ξ) > cos2 ξ for some ξ ∈ (0, π/2). With η = cos2(ξ − c) for

some c ∈ (0, π/2) it follows again from the quoted theorem on differential inequalities that
v(x) � cos2(x − c) > cos2(x) for all x ∈ [ξ, π/2]. From Fleming’s inequality we now have
only the two cases:

(i) For any ε > 0 there exists a ξ ∈ (0, ε) with v(ξ) > cos2 ξ.

(ii) There exists an ε > 0 with v(x) = cos2 x for all x ∈ (0, ε).

In case (i) we have v(x) � cos2(x − c) > cos2(x) for all x ∈ [ξ, π/2]. Since there exists
such a ξ arbitrarily close to 0 it follows that v(x) > cos2(x) for all x ∈ (0, π/2] . Since v is
an even function the inequality extends to all x with |x| ∈ (0, π/2] .

In case (ii) the identity theorem of holomorphic functions implies v(x) = cos2(x) for all
x ∈ R since v is the restriction of an entire function to the real line. Thus we have derived the
alternatives (i) and (ii) as being exhaustive.

Suppose now that alternative (ii) holds. From the spectral decomposition (3) of Pφ we
extract the constant term and that with the highest frequency according to

Pφ(t) =
n∑

α=1

λ2
α + 2

n∑
α,β=1
α>β

λαλβ cos[(ωα − ωβ)t]

=
n∑

α=1

λ2
α + 2λnλ1 cos[(ωn − ω1)t] + 2

n∑
α,β=1

α>β,(α,β) �=(n,1)

λαλβ cos[(ωα − ωβ)t].

5
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The assumption Pφ(t) = cos2((�h)φt) = 1
2 (1 + cos(2(�h)φt)) now implies, due to λαλβ > 0

for all α, β, that the index set of the last sum is empty. Thus we have n = 2 and

λ2
1 + λ2

2 = 1
2 , 2λ1λ2 = 1

2 , ω2 − ω1 = 2(�h)φ.

The first two equations imply λ1 = λ2 = 1/2. From this it follows that the third condition
ω2 − ω1 = 2(�h)φ holds, since

(�h)2
φ = λ1ω

2
1 + λ2ω

2
2 − (λ1ω1 + λ2ω2)

2

= 1
2

(
ω2

1 + ω2
2

) − 1
4 (ω1 + ω2)

2

= 1
4 (ω1 − ω2)

2.

Thus we have derived from alternative (ii) that φ is a linear combination of just two
eigenvectors of h with spectral components of equal norm. The inverse conclusion that
alternative (ii) follows from φ = φ1 + φ2 with hφi = ωiφi, ω2 > ω1 and ‖φi‖2 = λi = 1/2 is
obvious from

Pφ(t) = λ2
1 + λ2

2 + 2λ1λ2 cos[(ω2 − ω1)t]

= 1
2 (1 + cos[(ω2 − ω1)t]) = cos2((�h)φt). �

3. Mixed state decay

Let ρ : H → H be a density operator on the finite-dimensional Hilbert space H, i.e. ρ is
linear with ρ � 0 and Tr(ρ) = 1. Due to the spectral theorem there exist mutually orthogonal
vectors ψ1, . . . , ψn with ‖ψk‖ = 1 for all k and there exist numbers λ1, . . . , λn ∈ R>0 with∑n

k=1 λk = 1 such that

ρ =
n∑

k=1

λkψk〈ψk, ·〉. (8)

The orthogonal projection � : H → H onto the range of ρ is given by

� =
n∑

k=1

ψk〈ψk, ·〉.

� is the smallest orthogonal projection with Tr(ρ�) = 1.

For an arbitrary orthogonal projection E : H → H the nonnegative number Tr(ρE) is the
probability that the state ρ passes a filter for the property associated with E. More generally,
the expectation value of a linear symmetric operator A : H → H is given by 〈A〉ρ = Tr(Aρ)

and its variance is (�A)2
ρ = 〈A2〉ρ − 〈A〉2

ρ.

The dynamics φ �→ φt = exp(−iht)φ is extended from vectors to density operators
through ρ �→ ρt = e−ihtρ eiht . As the generalization of the survival probability to mixed states
we use the function Pρ : R → [0, 1] with

Pρ(t) = Tr(� e−ihtρ eiht ) = 〈eiht� e−iht 〉ρ = 〈�〉ρt
.

The number Pρ(t) thus gives the probability that the evolved state ρt passes a filter for the
property � associated with the initial state ρ. Again t = 0 is an absolute maximum of Pρ since
Pρ(0) = 1. From this it follows that P ′

ρ(0) = 0 since Pρ is differentiable. Our generalization
of proposition 1 to the case of mixed states is as follows.

Proposition 2. Let ρ : H → H be a density operator such that (�h)ρ > 0. Then exactly one
of the alternatives (i) or (ii) holds.

6
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(i) Pρ(t) > cos2((�h)ρt) for all t ∈ R with 0 < (�h)ρ |t | � π/2
(ii) Pρ(t) = cos2((�h)ρt) for all t ∈ R

Alternative (ii) holds if and only if there exist two (different) eigenvalues ω1, ω2 of h such that
every vector ψk which appears in the spectral decomposition (8) of ρ has a decomposition
ψk = φk,1 + φk,2 with

hφk,1 = ω1φk,1, hφk,2 = ω2φk,2 and 〈φk,ε, φl,η〉 = 1
2δk,lδε,η

for all k, l ∈ {1, . . . , n} and for all ε, η ∈ {1, 2}.

Before we enter the proof we first summarize a few simple general properties of Pρ which
will be needed.

Let �1, . . . , �q with q � n be an orthonormal basis of H such that h�r = ωr�r for
r = 1, . . . , q. Then

Pρ(t) = Tr(eiht� e−ihtρ) =
q∑

r=1

〈�r, eiht� e−ihtρ�r〉

=
q∑

r,s=1

ei(ωr−ωs)t 〈�r,��s〉〈�s, ρ�r〉.

Thus Pρ is a finite linear combination of exponentials and thus of C∞ type.
As in the case of pure states the condition (�h)ρ = 0 implies Pρ(t) = 1 for all t. This

can be seen as follows:

0 = (�h)2
ρ = 〈h2〉ρ − 〈h〉2

ρ = 〈(h − 〈h〉ρ)2〉ρ

=
n∑

k=1

λk‖(h − 〈h〉ρ)ψk‖2.

Thus we have (h − 〈h〉ρ)ψk = 0 for all k. Therefore all the vectors ψk contributing to the
spectral decomposition of ρ are eigenvectors of h (with the same eigenvalue). From this
follows the stationarity of ρ, i.e. ρt = ρ for all t. While in the case of pure states the condition
(�h)φ > 0 implies that Pφ is not constant, this is not so with mixed states. A counterexample
is provided by any ρ such that � commutes with h as is, e.g., the case for ρ(H) = H, since
then � = idH.

In order to better understand Pρ near 0 we first observe

Pρ(t) = Tr(� e−ihtρ eiht ) =
n∑

k=1

〈ψk, e−ihtρ eihtψk〉

=
n∑

k,l=1

〈ψk, e−ihtψl〉λl〈ψl, eihtψk〉 =
n∑

k,l=1

λl|〈ψk, e−ihtψl〉|2

=
n∑

k=1

λk|〈ψk, e−ihtψk〉|2 +
n∑

k,l=1
k �=l

λl|〈ψk, e−ihtψl〉|2.

We thus have

Pρ(t) =
n∑

k=1

λkPψk
(t) +

n∑
k,l=1
k �=l

λl|〈ψk, e−ihtψl〉|2. (9)

7
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The Taylor expansion of Pρ at 0 now yields

Pρ(t) =
n∑

k=1

λk

(
1 − (�h)2

ψk
t2) + t2

n∑
k,l=1
k �=l

λl|〈ψk, hψl〉|2 + O(t3)

= 1 − t2
n∑

k=1

λk(�h)2
ψk

+ t2
n∑

k,l=1
k �=l

λl|〈ψk, hψl〉|2 + O(t3).

From this we infer

−P ′′
ρ (0)

2
=

n∑
k=1

λk(�h)2
ψk

−
n∑

k,l=1
k �=l

λl|〈ψk, hψl〉|2. (10)

We shall now prove the generalization of Fleming’s bound to the survival probability of
a property � for a mixed state as stated in proposition 2.

Proof. As in the case of pure states we start from
d

dt
Pρ(t) = d

dt
〈eiht� e−iht 〉ρ = i〈eiht [h,�] e−iht 〉ρ = i〈[h,�]〉ρt

.

The generalized uncertainty relation for the mixed state ρt applied to the pair of observables
(h,�) reads

2(�h)ρt
(��)ρt

� |〈[h,�]〉ρt
|.

From �2 = � we obtain (��)2
ρt

= Pρ(t)(1 − Pρ(t)) and therefrom the estimate∣∣∣∣ d

dt
Pρ(t)

∣∣∣∣ � 2(�h)ρ
√

Pρ(t)(1 − Pρ(t))

for all t ∈ R.

The alternatives (i) and (ii) follow from this for t > 0 in exactly the same way as in
the case of the pure state survival probability Pφ. Since, however, the mixed state survival
probability Pρ need not be an even function, the case t < 0 needs a separate consideration: the
case t < 0 is transformed into the case t > 0 by replacing h through −h. Since the variance of
−h in the state ρ is the same as that of h, the alternatives (i) and (ii) hold for t < 0 unchanged.

Suppose now that alternative (ii) holds. Then Pρ(t) = cos2((�h)ρt) = 1 − t2(�h)2
ρ +

O(t4) for t → 0. Thus −P ′′
ρ (0)/2 = (�h)2

ρ holds. From equation (10) we then obtain

(�h)2
ρ =

n∑
k=1

λk(�h)2
ψk

−
n∑

k,l=1
k �=l

λl|〈ψk, hψl〉|2. (11)

Now a general result of probability theory says that the variance of a stochastic variable
under a mixture of probability measures is greater or equal to the mixture of individual
variances, or more specifically applied to the present context it says that

(�h)2
ρ −

n∑
k=1

λk(�h)2
ψk

=
n∑

k=1

n∑
l=k+1

λkλl

(〈h〉ψk
− 〈h〉ψl

)2 � 0. (12)

The proof of equation (12) is given in appendix B. From equations (11) and (12) it thus follows
that

0 � −
n∑

k,l=1
k �=l

λl|〈ψk, hψl〉|2 =
n∑

k=1

n∑
l=k+1

λkλl

(〈h〉ψk
− 〈h〉ψl

)2 � 0.
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Thus both sides of this equation must vanish and 〈ψk, hψl〉 = 0 and 〈h〉ψk
= 〈h〉ψl

follows for
all (k, l) with k �= l. Furthermore we have

(�h)2
ρ =

n∑
k=1

λk(�h)2
ψk

.

From (9) it follows for Pρ(t) = cos2((�h)ρt) = 1
2 (1 + cos(2(�h)ρt)) that

1

2
(1 + cos(2(�h)ρt)) =

n∑
k=1

λkPψk
(t) +

n∑
k,l=1
k �=l

λl|〈ψk, e−ihtψl〉|2. (13)

This implies that each of the even functions Pψk
is a real linear combination of the constant

function 1 and cos(2(�h)ρt). Thus we have for all t ∈ R

Pψk
(t) = Ak + Bk cos(2(�h)ρt) = Ak + Bk − 2Bk sin2((�h)ρt)

= 1 − 2Bk sin2((�h)ρt),

with constants Ak,Bk ∈ R such that Pψk
(0) = Ak + Bk = 1. From 0 � Pψk

(t) � 1 it follows
that 0 � 2Bk � 1.

Thus Pψk
obeys for t → 0

Pψk
(t) = 1 − 2Bk(�h)2

ρt
2 + O(t4).

Taking into account that 〈ψk, hψl〉 = 0 for k �= l the right-hand side of equation (13) obeys

n∑
k=1

λkPψk
(t) +

n∑
k,l=1
k �=l

λl|〈ψk, e−ihtψl〉|2 =
n∑

k=1

λk

(
1 − 2Bk(�h)2

ρt
2) + O(t4).

Thus we conclude from equation (13) that

1 − (�h)2
ρ t2 =

n∑
k=1

λk

(
1 − 2Bk (�h)2

ρ t2) .

From this it follows that
∑n

k=1 λk2Bk = 1, which in turn implies by means of 0 � 2Bk � 1
that 2Bk = 1 for all k. Thus we have (�h)ψk

= (�h)ρ and

Pψk
(t) = cos2((�h)ρt)

for each k. From (13) it now follows that

n∑
k,l=1
k �=l

λl|〈ψk, e−ihtψl〉|2 = 0

for all t. For each of the vectors ψk alternative (ii) of proposition 1 is thus realized. From
〈h〉ψk

= 〈h〉ψl
and from (�h)ψk

= (�h)ρ it finally follows that the eigenvalues ωk,ε in
hφk,ε = ωk,εφk,ε do not depend on k.

The inverse statement is obvious by direct computation. �
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Appendix A. Differential inequalities

In order to give a rigorous argument for Fleming’s bound in propositions 1 and 2 we made use
of the theorem, formed by the following propositions 3 and 4, to obtain (7). Its proof can be
found either in chapter I, section 9, sections VI and VIII (pp 73–75) of [12] or in Chapter II,
section 8, sections IX and X (pp 67–69) of [13].

Let I, J be two closed real intervals with (ξ, η) ∈ I × J and let f : I × J → R be
continuous.

Proposition 3. The initial value problem y(ξ) = η of the differential equation y ′ = f (x, y)

has two solutions y∗ and y∗ which both extend to the boundary of I × J such that any other
solution y of this initial value problem obeys y∗(x) � y(x) � y∗(x) wherever both sides of
an inequality are defined3.

Proposition 4. Let v : I → J and w : I → J be C1 functions with

v(ξ) � η and v′(x) � f (x, v (x)) for all x � ξ

w(ξ) � η and w′(x) � f (x,w (x)) for all x � ξ

then holds v(x) � y∗(x) and w(x) � y∗(x) for all x � ξ wherever both sides of an inequality
are defined.

Appendix B. Variance and mixing

In proving (12) we applied the following result on variances.

Lemma 5. Let ρ : H → H be a density operator on the finite-dimensional Hilbert space
H with its spectral decomposition as given by equation (8). Let h : H → H be linear and
symmetric. We abbreviate 〈h〉ψk

by 〈h〉k. Then

(�h)2
ρ =

n∑
k=1

λk(�h)2
k +

1

2

n∑
k,l=1

λkλl(〈h〉k − 〈h〉l)2.

Proof. First we observe that

(�h)2
ρ = 〈h2〉ρ − 〈h〉2

ρ =
n∑

k=1

λk〈h2〉k −
n∑

k,l=1

λkλl〈h〉k〈h〉l

=
n∑

k=1

λk(�h)2
k +

n∑
k=1

λk〈h〉2
k −

n∑
k,l=1

λkλl〈h〉k〈h〉l .

From the last term we extract the contribution with k = l to obtain for M = (�h)2
ρ −∑n

k=1 λk(�h)2
k

M =
n∑

k=1

λk〈h〉2
k −

n∑
k=1

λ2
k〈h〉2

k −
n∑

k=1

n∑
l=1,l �=k

λkλl〈h〉k〈h〉l .

3 The solution y∗ is called minimal and y∗ is called maximal. Yet it is also common to call any solution of the
maximal domain a maximal solution. These two notions of maximal solutions thus should not be confused.
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In the second sum we replace λ2
k = λk

(
1 − ∑

l �=k λl

)
which yields

M =
n∑

k=1

n∑
l=1,l �=k

λkλl〈h〉2
k −

n∑
k=1

n∑
l=1,l �=k

λkλl〈h〉k〈h〉l

=
n∑

k=1

n∑
l=1,l �=k

λkλl

(〈h〉2
k − 〈h〉k〈h〉l

)

= 1

2

n∑
k=1

n∑
l=1,l �=k

λkλl

(〈h〉2
k + 〈h〉2

l − 2〈h〉k〈h〉l
)

= 1

2

n∑
k=1

n∑
l=1,l �=k

λkλl(〈h〉k − 〈h〉l )2.

�

References

[1] Exner P 1985 Open Quantum Systems and Feynman Integrals (Dordrecht: Reidel)
[2] Mandelstam L I and Tamm I E 1945 The uncertainty relation between energy and time in nonrelativistic quantum

mechanics J. Phys. (USSR) 9 249–54
[3] Fleming G N 1973 A unitary bound on the evolution of nonstationary states Nuovo Cimento A 16 232–40
[4] Giovannetti V, Lloyd S and Maccone L 2003 Quantum limits to dynamical evolution Phys. Rev. A 67 0521091–7
[5] Brody D C 2003 Elementary derivation of passage times J. Phys. A: Math. Gen. 36 5587–93
[6] Andrews M 2007 Bounds to unitary evolution Phys. Rev. A 75 0621121–2
[7] Anandan J and Aharonov Y 1990 Geometry of quantum evolution Phys. Rev. Lett. 65 1697–700
[8] Horesh N and Mann A 1998 Intelligent states for the Anandan–Aharonov parameter-based uncertainty relation

J. Phys. A: Math. Gen. 31 L609–11
[9] Uhlmann A 1992 An energy dispersion estimate Phys. Lett. A 161 329–31

[10] Schulman L S 2002 Time in Quantum Mechanics ed J G Muga et al (Berlin: Springer)
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[12] Walter W 1976 Gewöhnliche Differentialgleichungen (Berlin: Springer)
[13] Walter W 1970 Differential and Integral Inequalities (Berlin: Springer)

11

http://dx.doi.org/10.1007/BF02819419
http://dx.doi.org/10.1088/0305-4470/36/20/314
http://dx.doi.org/10.1103/PhysRevA.75.062112
http://dx.doi.org/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1088/0305-4470/31/36/003
http://dx.doi.org/10.1016/0375-9601(92)90555-Z

	1. Introduction
	2. Pure state decay
	3. Mixed state decay
	Acknowledgment
	Appendix A. Differential inequalities
	Appendix B. Variance and mixing
	References

